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Abstract We study mode-locking in disordered media as a boundary-value problem. Fo-
cusing on the simplest class of mode-locking models that consists of a single driven over-
damped degree-of-freedom, we develop an analytical method to obtain the shape of the
Arnol’d tongues in the regime of low AC-driving amplitude or high AC-driving frequency.
The method is exact for a scalloped pinning potential and easily adapted to other pinning
potentials. It is complementary to the analysis based on the well-known Shapiro’s argument
that holds in the perturbative regime of large driving amplitudes or low driving frequency
where the effect of pinning is weak.
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1 Introduction

The phenomenon of mode-locking is a general feature of nonlinear dynamical systems. It
consists of a resonant response to an external periodic force that occurs when a characteristic
frequency of the driven system matches or locks onto the driving frequency. In the mode-
locked region, the system traces periodic orbits in phase space. Outside the region of mode
locking, the system may follow quasiperiodic orbits or march towards the onset of chaos.

Examples of systems that exhibit the mode-locking behavior abound in nature. In 1665,
Huygens discovered the spontaneous synchronization of swinging pendulum clocks in close
proximity to one another. On the celestial scale, the moon’s period of rotation locks onto its
period of revolution about the Earth in a 1:1-ratio, so it always presents the same face to ob-
servers on Earth. The rotation of Mercury is also locked onto the Sun such that there are three
rotations for every two orbits, thereby constituting a scenario of 3:2-mode locking. Mode-
locking to external periodic stimuli is also a common feature in biology. Examples include
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the cell cycle found in budding yeast [1], the swimming and heartbeat networks of medicinal
leeches [2], as well as the rhythmic behavior produced by neuronal networks [3]. The mode-
locking behavior is also relevant in such diverse phenomena as vortex shedding [4], singing
sand dunes [5], and multimode lasers [6–8]. In condensed-matter physics, Josephson junc-
tion arrays [9], driven superconducting vortices [10–12], as well as charged-density waves
(CDW) [14–20] provide convenient settings for studying the phenomenon of mode-locking.

Mathematicians have long used the language of maps to describe trajectories followed
by dynamical systems in phase space from which they would infer their associated physical
properties. In particular, circle maps [21, 25], along with the mathematical tools of bifur-
cation theory and return map, lay the foundation for much of the theoretical modeling and
analysis of mode-locking phenomena. Though based on previous studies [22, 23], the cor-
respondence between circle maps and an overdamped particle in a periodic potential is not
simple. Conceptually, the simplest evolution equation that yields mode-locking behavior
consists of a single overdamped degree-of-freedom (DOF) φ in a periodic pinning potential
Vp(φ) of strength h, driven by an external periodic force of frequency ω. The dynamics is
described by the equation

dφ

dt
= F0 + F1 cosωt + Fp(φ), (1)

where Fp(φ) = −h
dVp(φ)

dφ
is the pinning force. Mode-locking behavior occurs when the time-

averaged velocity locks on to a rational multiple of the external driving frequency:
〈
dφ

dt

〉
cycle

≡
∫

2π/ω

1

2π/ω

dφ

dt

= F0 + 〈
Fp

〉
cycle

≡ ωd = p

q
ω (2)

for a region of nonzero area in the (F0,F1)-parameter space. The regions in the (F0,F1)-
parameter space where mode-locking occurs are known as Arnol’d tongues.1 The time-
averaged velocity exhibits the behavior of a devil’s staircase (DS): there exists a mode-
locked plateau corresponding to each rational p/q . While there have been much work on
the fractal dimensionality in the set of gaps between the mode-locked steps in the stair-
case [24–28], most results concerning the width of the corresponding mode-locked steps
have relied upon an approximate method proposed by Thorne et al. [30] that generalizes an
argument originally due to Shapiro [29]. Thorne’s method, introduced in the context of a
single-particle model of CDW, is based on the identification of the mode-locked steps with
the corresponding regions of minima in the pinning energy for the system.

Early analytical results for specific pinning potentials have indicated, however, that the
correspondence between a single overdamped particle in a periodic pinning potential and
the circle map may not be simple and that Thorne’s “pinning energy” approximation may
be qualitatively incorrect. The simplest case where exact analytical results are available is a
single overdamped DOF in a cosine pinning potential, Vp(φ) = h cosφ. It was shown in [22]
and [23] that, for the cosine potential, there are no subharmonic mode-locked plateaus (cor-
responding to q �= 1). In addition, the Arnol’d tongues are symmetric with respect to the
mirror axis centered at the apex of the tongue and pinch to zero width for all parameters in
the phase space, as shown in Fig. 1. The condition wherein the mode-locked steps occur in

1See, for example, Fig. 3 in [24], or see Figs. 3 and 4 in [3].
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Fig. 1 1:1 Arnold tongue for
pure cosine pinning potential

regions where the pinning energy in the mode-locked state is lower than that in the unlocked
state is identically satisfied for the system of a single particle in a pure cosine pinning poten-
tial. However, as shown below, this condition is only necessary and not sufficient condition
of stability of the mode-locked state for a more generic periodic pinning potential. In fact
the “pinning energy”-argument predicts the existence of both harmonic and subharmonic
steps for a general periodic pinning potential containing higher harmonics [29, 30]. This is
in contrast to the exact results obtained by Azbel and Bak for a single overdamped degree
of freedom in a pinning potential consisting of a series of delta functions that showed ex-
plicitly the absence of subharmonic steps [31]. Thus, the work of Azbel and Bak provided
strong early evidence that the approximate “pinning-energy” method may be qualitatively
incorrect.

In this paper, we demonstrate how this method fails to reproduce the mode-locking be-
havior in details even for the 1:1-step. In particular, we re-examine the single DOF model
for various pinning potentials and show that the cosine pinning is special. For a generic peri-
odic pinning potential containing higher harmonics, the tongues are, in general, asymmetric
and do not pinch to zero. Numerics have shown that, in extended systems consisting of
many coupled DOFs, the Arnol’d tongues are generally asymmetric and never pinch to zero
width. This more-complex shape of the Arnol’d tongues may be the result of the collective
behavior of many coupled degrees of freedom; it can arise even for a single particle pro-
vided that the pinning potential differs from a simple cosine one. Of course in an extended
system, collective effects renormalize the pinning potential, so even a bare cosine pinning
would yield asymmetric Arnol’d tongues. In what follows, we show that for generic pinning
potential the Shapiro’s method always fails at small F1, where the asymmetry of the Arnol’d
tongue is the most apparent. For the exemplary case of scalloped potential, we develop an
exact analytical method for the calculation of the mode-locking behavior of a single DOF
for F1 small enough so that the single DOF does not hop from one scallop to the next. This
is precisely the regime where the Shapiro’s argument always fails. Our analytical solution
for small F1 also provides dynamical constraints that are both necessary and sufficient for
the full determination of the mode-locked step widths.

Thus, this work serves as a starting point in our effort to construct a mean-field theory for
the general phenomenon of mode-locking in extended media that is amenable to analytical
analysis in useful limits. To do so, we must first test analytical approximations at the single-
particle level and identify a simple, yet generic, pinning potential as our prototypical starting
point. To achieve these two initial goals, we study in detail the case of 1:1-mode locking and
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consider two specific periodic pinning potential G[φ]: the scalloped parabolic potential and
an impure cosine potential (consisting of more than one harmonic). In Sect. 2, we will review
Shapiro’s method for calculating the width of mode-locked steps. We will then consider
the mode-locking dynamics of one particle in the scalloped parabolic pinning potential in
Sect. 3. This form of potential has the advantage of permitting exact analytical solution in
the no-hopping regime. In Sect. 4, we will repeat our analysis for the impure cosine pinning
potential. Section 5 concludes our paper.

2 Shapiro’s Method in Calculating Mode-Locked Step Widths

Adapting an argument proposed by Shapiro [29], Thorne et al. computed the width of
the harmonic and subharmonic mode-locked steps for the one-DOF model of CDW given
in (1) [30]. While their calculation explains the occurrence of mode-locking in terms of
the lowering of the pinning energy, their results do not agree with numerical results for the
shape of the Arnol’d tongues in the regime of low AC-driving amplitude or high AC-driving
frequency. This regime corresponds to the case where the particle dynamics is confined to
one period of the pinning potential. To show how Shapiro’s method fails in this regime, we
first review the calculation of Thorne et al. [30].

It is instructive to first consider the single DOF model of (1) for a cosine pinning poten-
tial. We note that in the absence of pinning the equation of motion has the exact solution
φ(t) = F0t + F1

ω
sinωt + φ0, with φ0 a constant, which gives the trivial result ωd = F0. In

the presence of pinning we let

φ(t) = ωdt + F1

ω
sinωt + φ0(t), (3)

with ωd and φ0(t) to be determined. We note that (1) contains two characteristic frequency
scales: the frequency ω of the external drive and the frequency h of temporal variations of
the phase due to the pinning potential. In the limit of large drive, the particle moves rapidly
over the pinning potential and the temporal variations due to pinning are consequently small.
Following [30] we then look for a solution where φo ≈ constant, independent of time. We
expect this approximation will apply for large F1 and weak pinning. It turns out to be es-
sentially exact for a simple cosine pinning potential, but it fails for small values of F1 for
arbitrary periodic pinning. Substituting (3) into (1), utilizing the Bessel function summation
formula

exp

[
−ı

(
F1

ω

)
sin ωt

]
=

∞∑
p=−∞

Jp

(
F1

ω

)
exp(−ıpωt), (4)

and averaging over a cycle, we obtain

ωd = F0 + 〈
Fp

〉
cycle

, (5)

〈
Fp

〉
cycle

= h sinφ0

∞∑
p=1

(ωd =pω)

(−1)pJp(F1/ω), (6)



Mode-Locking in Driven Disordered Systems as a Boundary-Value 949

where the sum is over all p such that ωd = pω. Similarly the mean pinning energy is
given by

〈
Vp

〉
cycle

= h cosφ0

∞∑
p=1

(ωd=pω)

(−1)pJp(F1/ω). (7)

A mode-locked state occurs when ωd in (5) can be kept constant (and equal to pω) for a
range of values of F0 and F1 by adjusting the phase φ0. For a cosine pinning potential the
range of φ0 that renders ωd = constant is identical to the range of φ0 where 〈Vp〉cycle < 0.
In this case the region of parameters where the system is mode-locked coincides with the
region where the energy of the mode-locked state is lower than that of the unlocked state.
This is not, however, the case for arbitrary pinning potential, as we will see below. In general
the condition that energy of the mode-locked state be lower than that of the unlocked state
is necessary for their stability of the mode-locked state, but not sufficient (see Fig. 5 below).
For pure cosine pinning case only harmonic steps are obtained. The p/1 step occurs for a
range (�F0)p/1 of values of F0 given by (�F0)p/1 = 2h|Jp(F1/ω)|. The Arnol’d tongues
for this case are shown in Fig. 1.

Thorne and collaborators adapted this argument to an arbitrary periodic pinning potential
that can be expressed as a Fourier sum:

Vp(φ) = a0

2
+

∞∑
q=1

aq cosqφ, (8)

Proceeding as in the single cosine case, using again the Bessel summation formula and av-
eraging over a cycle, we find that ωd is determined by (5), where the time-averaged pinning
force is zero unless ωd = pω/q , for which

〈
Fp

〉
cycle

= 2
∞∑

q=1

∞∑
p=−∞

qaqJp

(
qF1

ω

)
sinqφ0. (9)

Thus, for a given F1, the constant phase φ0 can be adjusted to compensate changes in F0

such that the time-average phase velocity ωd stays locked to rational values of the external
driving frequency. Furthermore, (9) suggests that the width of the Shapiro steps oscillates
with F1, which has indeed been observed in experiments [12, 13]. These authors further
assumed that the range of parameters where the system is mode-locked coincides with those
where the mean pinning energy in the mode locked state is lower than its value a0/2 in the
unlocked state, i.e.,

δ〈Vp〉cycle =
∞∑

q=1

∞∑
p=−∞

aqJp

(
qF1

ω

)
cos (qφ0) < 0. (10)

The mean pinning force given by (9) cancels the DC drive F0 in a range −φp(F0,F1) ≤
φ0 ≤ φp(F0,F1). The condition that φp(F0,F1) ∈ [0,2π] can then be used to determine
the boundaries of the mode-locked regions in the (F0,F1) plane. Thorne et al. use the
condition δ〈Vp〉cycle < 0 to determine the Arnol’d tongues. The latter holds for a range
−φm(F0,F1) ≤ φ0 ≤ φm(F0,F1). For pure cosine pinning φm(F0,F1) = φp(F0,F1). For
arbitrary pinning potentials φm(F0,F1) ≥ φp(F0,F1), resulting in an overestimate of the
mode-locked regions. Regardless of the condition used for mode-locking, a consequence
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Fig. 2 The scalloped parabolic
pinning potential, defined by (11)

of (9) and (10) is that each Arnol’d tongue is symmetric about a central axis for any periodic
pinning potential. In the case of 1:1-mode locking, the tongue is symmetric about the axis
F0 = 1, since Jp(0) = 0 for all p �= 0 and J0(0) = 1 assuming appropriate normalization.
For the 1:1-mode locking case, we will show explicitly, via exact numerical calculations,
that this symmetry of Arnol’d tongue is violated in the regime where the influence of AC-
drive is large, i.e. when the drive amplitude F1 is small or the drive frequency ω is small
(cf. Fig. 4), for two specific cases of the periodic pinning potential corresponding to the
scalloped parabolic and the impure cosine pinning.

3 Scalloped Parabolic Pinning Potential

We first consider the case of scalloped parabolic pinning, whose potential can be expressed
either in terms of the floor function, �x�, defined as the largest integer less than or equal to
its argument x, or as a Fourier series:

Vscalloped(φ) = 1

2

(
φ − �φ� − 1

2

)2

(11)

= 1

24
+

∞∑
q=0

1

2π2q2
cos 2πqφ. (12)

A plot of the scalloped parabolic potential is shown in Fig. 2. In this case the double sum in
the expression for the time-averaged pinning force, (9), reduces to a single infinite sum over
terms for which p = q . Using (12), the cycle-averaged pinning force is given by:

〈Fp(φ0)〉cycle =
∞∑

q=0

1

πq
Jq(qF1) sin 2πqφ0. (13)

For the scalloped pinning potential of Fig. 2 the pinning force is piece-wise linear and the
dynamics of the driven particle can be solved exactly within each period of the pinning
potential. This solution is expected to be exact for small values of F1, provided that the
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particle does not hop from one scallop to the next on the time scale of the external drive.
Within one period (1) is simply

dφ

dt
+ φ =

(
F0 + 1

2

)
+ F1 cos 2πt. (14)

For simplicity we discuss in detail only mode-locked steps with p = 1. In this case (14)
must be solved with the boundary conditions

φ(tJ + nT ) = 0, (15)

φ(tJ + (n + 1)T ) = 1, (16)

where T = 2πq/ω. The jump time tJ plays the role of the constant phase φ0 in the previ-
ous section. Equation (15) determines the constant of integration for our first-order ODE,
while (16) yields the relationship between F0 and F1 corresponding to mode-locking. This
can be rewritten as

1

1 − e−1
=

[
F0 + 1

2
+ F1

h2 + ω2
(cos 2πtj − 2π sin 2πtj )

]
. (17)

The condition that the values of tJ in (17) must be in [0, T ] determines the boundaries
F1(F0) of the Arnol’d tongues, given by

F1 ≥ ±
√

1 + (2π)2

(
1

1 − e−1
− F0 − 1

2

)
. (18)

These are the straight lines shown in Fig. 3, along with the complete Arnol’d tongues for the
1:1 step obtained by exact numerics. Clearly the analytical solution yields the exact value of
F0 for the onset of mode-locking at F1 = 0 and also does an excellent job of fitting the exact
Arnol’d tongues for small F1, where the driven particle remains within a single scallop. In
contrast, Shapiro’s argument fails most severely precisely in this region of small F1, as ap-
parent from Fig. 4 where the Arnol’d tongues obtained for the 1:1 mode-locked step by the
Shapiro argument (triangles) are compared to the exact solution (diamonds). As mentioned
in Sect. 2, Shapiro’s method predicts symmetrical oscillation about the axis F0 = 1. How-
ever, exact numerical solution reveals that the 1:1-mode locked step, in fact, originates from
F0 ≈ 1.1. This difference arises because the Shapiro method is essentially a perturbation
theory about the high velocity state and becomes exact at large drives and very weak disor-
der. On the other hand for fixed driving frequency ω and small AC-drive amplitude F1, or
conversely fixed F1 and high frequency the driving force has only a weak effect and pinning
dominates. In this region the time-averaged velocity is well approximated by the instanta-
neous velocity. This fact underlies our approximation scheme in which we solve exactly for
the instantaneous dynamical solution for the CDW phase φ(t), assuming that the particle
does not hop over any one scallop in the periodic pinning potential. Neglecting the effect of
scallop-hopping simplifies the dynamics considerably, as the elimination of the associated
nonlinearity permits analytically tractable solutions. This method is complementary to the
one developed by Shapiro. Our method can be readily generalized to other harmonic and
subharmonic mode-locking steps that involve no hopping between scallops and thus satisfy
the constraint p = 1.
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Fig. 3 1:1 Arnold tongue for
scalloped parabolic pinning
potential: numerical method
versus “exact” method for
small F1

Fig. 4 Plot of Arnol’d tongue
for 1:1 mode-locking step with
the scalloped parabolic pinning
potential. Black triangles
represent data points obtained
from the zeros of the pinning
energy using Thorne’s method.
Numerically, the first 100 terms
of the sum were included in our
summation over the Bessel
functions. The black diamonds
represent data from numerical
results

4 Impure Cosine Pinning Potential

For a cosine pinning potential the width of mode-locked steps pinches to zero periodically
at finite values of the AC-driving amplitude, F1. This is well explained by Shapiro’s argu-
ment [30] based on its expression of the time-averaged pinning potential: since the time-
averaged pinning force has only one term for any particular values of p and q and it is a
consequence of the fact that pinning potential contains only a single harmonic in its Fourier
series. To see this point explicitly, we compare the two cases of a pure cosine pinning po-
tential function and of an impure cosine, consisting of a sum of two different harmonics:

Vcosine(φ) = 1

2π
cos 2πφ, (19)

Vimpure(φ) = 1

2π
cos 2πφ + 0.1

4π
cos 4πφ. (20)
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Fig. 5 Plot of the impure cosine
pinning potential consisting of a
sum of two harmonics. Gray
triangles represent data points
obtained from the zeros of the
pinning energy using Thorne’s
method. The black diamonds
represent data from numerics

Again we are focusing on 1:1-mode locked steps. For the impure cosine pinning, the time-
averaged pinning force is

〈Fp(φ0)〉 ∼ J1(F1) sin 2πφ0 + 0.1J2(2F1) sin 4πφ0 (21)

It is apparent from Fig. 5 that the addition of a small harmonic is sufficient to give a fi-
nite width to the tongues for all nonzero values of F1. Again Shapiro’s method clearly fails
at small F1. To analyze the dynamics in this region, we assume that there is no particle-
hopping and use the analytical method discussed in the previous section. To do this we fit
the impure cosine pinning potential to a parabola over one cycle. Using Mathematica, we
find that the fitted pinning potential yields V F

cosine(φ) = 0.186 − 1.17φ + 1.19φ2, or equiva-
lently, a scalloped parabolic pinning potential with a pinning strength of h ≈ 2.39 over the
same cycle. The resulting comparison plot of the numerically obtained Arnol’d tongue for
1:1-mode locking and the “V”-shaped asymptotes obtained analytically in the no-hopping
approximation is shown in Fig. 6. Again, there is remarkable agreement between our ana-
lytical approximation and the exact numerical solution in the small-drive regime.

To further clarify the role of the no-hopping approximation used in our analytical calcu-
lation, we note that in obtaining (18), we implicitly assume that |φ(t)| ≤ 1, for t ∈ [0,2π].
Self-consistency of our solution is then imposed by looking for the set of points in the re-
gion defined by (18) that explicitly satisfy |φ(t)| ≤ 1 for t ∈ [0,2π]. As shown in Fig. 7,
the region of (F0,F1), bounded by black circles, which explicitly satisfies the constraint
|φ(t)| ≤ 1 is an excellent approximation to the lopsided pear-shaped region of the Arnol’d-
tongue for F1 < 4. Beyond this region, the particle presumably hops over more than one
scallop per drive period, and our analytical approximation would no longer apply.

5 Conclusion

In summary, we have developed a simple analytical method to obtain the shape of the
Arnol’d tongues in the regime of small AC-driving amplitude F1 or high-driving frequency,
where the driven particle does not hop between different periods of the driving potential
within one period of the drive. This method is complementary to the perturbative one based
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Fig. 6 Shape of the Arnol’d
tongue for the 1:1 mode-locking
step for an impure cosine pinning
potential. The diamonds are exact
numerical results and the
V-shaped straight lines are the
analytical approximation in the
no-hopping regime,
corresponding to the limit of
small drive/high frequency

Fig. 7 The shape of the Arnol’d
tongue for the 1:1 mode-locking
step for a scalloped parabolic
pinning potential. The solid line
are exact numerical results and
the (red online) V-shaped straight
lines correspond to the analytical
approximation in the no hopping
regime. The region bounded by
the black circles are points of
(F0,F1) which are explicitly
checked to satisfy the constraint
of |φ(t)| ≤ 1

on Shapiro’s argument [29, 30] that applies in the large F1 or low frequency regime. The
method is exact for a scalloped pinning potential and is easily adapted to other pinning po-
tentials by a simple fit. Our method is easily adapted to the analysis of p/q mode-locking
steps for arbitrary q and p = 1.

As mentioned in the Introduction, the motivation of this work was to develop simple
methods for the analysis of mode-locking steps that will serve as the starting point for the
development of a mean-field theory of mode-locking in systems composed of many inter-
acting many degrees of freedom. We hope to do this by combining the no-hopping approx-
imation for the analysis of the low drive regime with the Shapiro argument for the study
of the high-drive region. It would also be interesting to consider numerically the crossover
limit to the large driving limit. Finally, while the phenomenon of mode-locking is pervasive
in dynamical systems, each subfield has developed its own set of theoretical tools, often
inspired and required by real-world applications. Despite past attempts [32], a consensus is
still lacking in regard to a unifying formalism in the description of mode-locking. It is our
further hope that our results would illuminate aspects of mode-locking, which are still not
well understood and which would merit further study.
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